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Abstract: - Self-excited vibration has been occasionally observed with a nature frequency of the mill stand during 

the strip rolling process. The root cause of this phenomenon has not been clearly explained yet. In general, it is 

related with rolling reduction ratio, rolling speed, frictional condition and material mechanics etc. According to 

the evolution of vibration amplitude, self-excited vibration can be classified into stable type with decreasing 

amplitude and unstable type with increasing amplitude by a critical condition where the vibration amplitude 

keeps unchanged. This critical condition is a criterion which can distinguish the type of self-excited vibration 

and help to escape the unstable self-excited vibration as well as prolong the rolling mill’s lifetime. This paper is 

aimed to determine the self-excited vibration criterion of a typical rolling mill. Based on different solutions to the 

mill’s differential vibration equations under different operational parameters, critical conditions mean that 

characteristic roots’ real parts are either zero or negative. They constitute the criterion curve in corresponding 

operational parameter field. The differential vibration equations of rolling mill are simplified as a set of 

second-order equations by assuming that the deformation region of the strip is equivalent to springs and damps. 

Then the equivalent damping and stiffness matrices can be calculated using 2D rigid-plastic FEM through 

applying perturbations of roll displacement and velocity. Compared with measured data, the predicted 

self-excited vibration criterion is proved to be reasonable. It’s believed that this research will be meaningful to 

optimize the rolling operational parameters and avoid the occurrence of unstable self-excited vibration. 
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1 Introduction 
Known as mechanical, hydraulic and automated 

system, the modern strip rolling mill has played an 

important role in strip rolling. However, it’s found that 

the self-excited vibration happens occasionally with 

the nature frequency of the mill stand during the strip 

rolling process. This vibration excited by small 

perturbations can keep continuous and its amplitude 

can become stronger and stronger. It will lead to low 

quality of products as well as some structure damages
 

[1] . The study of self-excited vibration is not much in 

existed literature. Some researchers tried to make 

their efforts to find the root cause of the vibration in 

cold or hot strip mills, but none has clearly understood 

or modelled this phenomenon yet [2] [3] [4]. 

In general, there are two different categories of 

self-excited vibration observed. One is torsional 

vibration of main drive system, and the other one is 

vibration of stand [5] [6] [7]
 
. In

 
this paper, the later 

one is focused on.
 
Some approaches have been 

employed to weaken self-excited vibration or avoid 

its occurrence. It’s found that the measures to increase 

the friction damping or modify the structural 

dynamics are generally taken to solve these problems
 

[8] [9] [10], but it’s not always effective. Basically, as 

the strips move faster and are pressed harder, the mills 

are easy to vibrate like self-excited vibration, and 

make patterns on the strips and rolls, even interrupt 

the production [11] [12]. Thus, there is a limit for 

choosing the mills’ rolling parameters to make thinner 

strips of high quality
 
[13]. In the steel factory, the 

rolling parameters are constantly determined by the 

experienced engineers. However, this is not so 

effective for handling new materials and new strip 

shapes. Therefore, it’s necessary to understand the 

self-excited vibration phenomenon clearly and obtain 

the criterion to guide the determination of the rolling 

parameters in order to skip the unstable self-excited 

vibration. 
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In recent years, Yoshida et.al [14] proposed a 

self-excited vibration model with consideration of the 

mechanical properties of material, rolling reduction 

ratio and rolling speed etc. The strip properties 

incorporate equivalent stiffness and damping matrices. 

The concept of this model is valuable, but the solution 

is not given specifically. Based on this concept, 

self-excited vibration of the stand is studied, and its 

vibration criterion is achieved in this research. The 

rest of this paper is organized as follow: section 2 

presents the theoretical model of the self-excited 

vibration of rolling mill; in section 3, the elements of 

the equivalent stiffness and damping matrices are 

calculated using 2D rigid-plastic FEM by applying 

small perturbations of roll displacement and velocity; 

section 4 presents a case study of the mill stand and 

the results are compared to the measured data from 

Panzhihua Iron and Steel Corporation; finally, the 

concluding remarks are given in Section 5. 

 

 

2 Self-excited vibration of rolling mill 
Unlike most researches on the transverse vibration 

and vertical vibration of rolls which focused on forced 

vibration with periodic excitation source [15] [16], 

this paper is aimed at self-excited vibration. It is 

activated generally by small perturbations. In linear 

systems, unstable self-oscillation system is generally 

associated with a negative damping term, which 

causes increasement exponentially in amplitude until 

the system failure. It is the negative damping that 

forms positive energy feedback in vibration system 

and assists the system absorb energy from external 

automatically to maintain the vibration. It’s difficult 

to find the root cause of forming negative damping; 

therefore, there is no exact solution to reduce the 

phenomenon. It’s reported that the effective approach 

is to decrease the rolling speed and reduction ratio, but 

the relationship between these parameters is still not 

fully understood, which motivates us to model the 

system continually. 

 

 

2.1 Model of the self-excited vibration 

A typical strip rolling system is illustrated in Fig.1. 

The vertical and horizontal directions of each roll are 

considered to be independent, and the system can be 

described as 4-DOF system, 1 1 2 2, , ,x y x y . The 

equivalent mass, damping, and stiffness of rolling mill 

are determined by mechanical system. 

The dynamics equations of the rolls can be 

modelled by using Newton’s Second Law: 
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Fig. 1. A simplified roll-strip system 
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Where 
0

M  is equivalent mass matrix of the rolls，

0
C  is the equivalent damping matrix of the 

mechanical system, F  is the equivalent force matrix 

acting on rolls and X  is roll displacement matrix. 

In general case, the external force F acting on the 

rolls is: 

( , , , ,...) ( ) nF x y x y F     (3) 

Where n  is the parameter of force function. 

If the perturbations of displacement and velocity 

are small and can be linearized, the element of 

stiffness and damping matrices can be expressed as: 

( , , )


 




  



i i
ij

j j

i i
ij

j j

dF F
K

dx x

dF F
C i j x y

dx x

   (4) 

Substituting Eq. (4) into Eq. (3), we can get: 

( , )  F X X KX CX     (5) 

Combining Eq. (5) and Eq. (1), we can get： 

0 0 0( ) ( ) 0    M X C C X K K X   (6) 
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Also, the Eq. (6) can be rewritten as: 
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Where 0
M , 0

C and 0
K are dependent on the rolling 

system. C  and K are effective contact damping 

and stiffness matrices between strip and work rolls 

dependent on friction conditions and rolling 

parameters. It should be noted that C and K are the 

key factors to determine self-excited vibration 

criterion and will be presented in detail in Section 3. 

 

 

2.2 Solution of the self-excited vibration 

equations 
The governing equation of the dynamics system (Eq. 

(6)) is second-order and its general solution is: 

( )   tx t A e    (8) 

Where,  and A  are parameters to be determined. 

Substituting it into Eq. (6), we can get:  

2
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If Eq. (9) has non-zero solution,  should meet the 

equation described as follows： 

2
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Its characteristic roots are
1 2 3 4 8, , , ,...     . The 

general solutions of differential equations are as 

follows: 
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Where  1 1 2 2( ) ( ) ( ) ( ) ( )
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Eq. (11) indicates that characteristic roots 

determine the type of vibration, stable or unstable. If 

characteristic roots are real number, then any positives 

or zeroes would signify unstable self-excited 

vibration while absolute negatives would manifest 

stable vibration.  

Furthermore, if characteristic roots are complex 

number, generally they are pairs of conjugate 

complex roots, and Eq. (11) becomes: 
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Where 1 1 1 2 1 1( ), ( ),...    a b i a b i This solution 

demonstrates that the vibration is periodic, and the 

amplitude changes with time. If real parts have any 

positives or zeroes, the amplitude would increase 

continuously, i.e. unstable self-exited vibration; 

otherwise it is stable vibration. However, if real parts 

are zeroes and negatives, the vibration is criterion, 

between convergent and divergent vibration.  

In the criterion case, the roll trajectories are 

ellipses. The components in solution with negative 

real parts would vanish with time and the components 

with zero real parts are left, thus Eq. (11) can be 

rewritten as follows: 
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Taking the top work roll for an example, eliminating t, 

we can get:  

   
22 2

1 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2     c c y d d x c d c d x y c d c d  

     (13) 
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Let
1 1cos sin , sin cos      n n n nx x y y x y , Eq. 

(13) can be rearranged as follows： 
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Thus, when the self-excited vibration is critical, the 

roll trajectory is ellipse, whose major axis and minor 

axis lie in a new coordinate system -n nx y . There is an 

angle   between -n nx y and 1 1-x y , as shown Fig. 2. 
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Fig. 2. Vibration trajectory of roll in critical condition 

 

 

3 Obtaining stiffness and damping 

matrices using rigid-plastic FEM  
When the perturbations are small, the changes on 

forces corresponding to displacement and velocity 

perturbations can be linearized. Recalling the 

definition of stiffness and damping, the ratio / F x  

and / F x  can be calculated as the stiffness K and 

damping C . Therefore the changes of forces acting on 

rolls resulting from the displacement and velocity 

perturbations could be obtained. By applying the 

perturbations to 2D models under certain reasonable 

boundary conditions, the changes of forces can be 

calculated using rigid-plastic FEM[ 17 ]. Different 

models corresponding to different perturbations are 

shown in Fig.3-5. Some treatments are shown in 

models in order to reduce the impact of outside rigid 

area as well as unknowns and improve the 

authenticity of simulating results.  
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Fig. 3. Rolling model without perturbation / with velocity 

perturbation 
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Fig. 4. Rolling model with a vertical displacement 

perturbation 
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Fig. 5. Rolling model with a horizontal displacement 

perturbation 

By evaluating the ratio / F x  which 

constitutes the stiffness matrix K , the change of force 

F  of each roll (upper and lower) at a different 

perturbed displacementx  is obtained. Analogously, 

the ratio / F x  is calculated, which makes up the 

matrix C , as shown in Fig.6-9. In this paper, the upper 

and lower parts of the mill are considered to be 

WSEAS TRANSACTIONS on APPLIED and THEORETICAL MECHANICS
Ling Ma, Yongqin Wang, 

Yuanxin Luo, Xingchun Yan

E-ISSN: 2224-3429 100 Volume 11, 2016



 

 

symmetrical. Thus the relationship among K and C  

is as follows: 

33 11; 44 22; 34 - 12; 13 31;
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    (15) 

Thus, all of the elements of Eq. (4) are determined 

numerically and a complete set of matrices C  

and K are obtained. 

For a rolling mill, operational parameters like 

reduction ratio, rolling speed, friction and yield stress 

of strip etc. can influence the occurrence of 

self-excited vibration. Different rolling operational 

parameters would result in different stiffness and 

damping matrices. Thus, for given strip material and 

frictional condition, stiffness and damping matrices 

could be regarded as the function of reduction ratio   

and rolling speed v .Other factors’ influences are 

supposed to be reflected in parameters of function. 

Assuming that:  

1 2

3 4
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
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n n

ij
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ij

v
K as

c

v
C bs
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    (16) 

Where 1s  , 2s , 1 4-n n are fitting parameters, the 

parameters a, b and c are defined as adjustment 

coefficients due to model simplification. 

Substituting the Eq. (16) into Eq. (1) to solve the 

vibration equations, we can get 8 characteristic roots 

which still are the functions of   and v . Searching 

the condition where some characteristic roots’ real 

part are zeros and the others are negatives in press 

ratio-speed domain, the criterion curve is acquired. 

The flow chart of this method is shown in Fig.10. 
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Fig. 6. Force change with a horizontal displacement 

perturbation  
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Fig. 7. Force change with a vertical displacement 

perturbation 
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Fig. 8. Force change with a horizontal velocity perturbation 
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Fig. 9. Force change with a vertical velocity perturbation 
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Fig.10. Flow chart of obtaining the vibration criterion curve

4 Application of the criterion curve of 

a rolling mill 
According to measured data acquired from F2 rolling 

mill in 2050mm hot strip rolling line of Panzhihua 

Iron and Steel Corporation, the corresponding 

criterion curve can be calculated. Its roll diameter is 

820mm; non-dimensional damping is 0.03; 

equivalent stiffness and mass of stand are 
10

5.4 10 / 
x

K N m , 11
2.6 10 / 

y
K N m , 

4
1.4 10 / 

x
M N m , 5

1.4 10 / 
y

M N m . Strip 

material is Q235，thus the yield stress is 235Mpa. 

Friction coefficient is 0.35. 

 

4.1 Acquisition of C and K of strip in rolling 

mill 

In the above-mentioned condition, the first step is 

calculating the stiffness and damping matrices in 

different press ratios or rolling speeds using 

rigid-plastic FEM. Next is fitting Eq. (16) based on 

achieved stiffness and damping data. The fitting 

parameters are shown in Table 1 and Table 2 for the 

case of a=5, b=35, c=8. From the fitting results, it is 

found that elements in damping matrices are 

proportional to the inverse of the rolling speed as 1/v 
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basically, while the relationship between stiffness 

matrices and rolling speed is not notable, which is 

consistent with the results of M. Yoshida [14]. 

 

 

4.2 Criterion curve of self-excited vibration 

Since 8 characteristic roots are the functions of   

and v , the criterion curve will be achieved by 

searching the condition where characteristic roots’ 

real part are either zeros or negatives in press ratio 

and speed domain. The comparison of calculated 

results and measured data is shown in Fig.11, the 

curve represents the criterion of self-excited vibration 

and five-pointed stars represent actual measurements. 

It is obvious that the curve is in good agreement with 

the fact. 

If rolling parameters locate in the left hand of the 

criterion curve, the self-excited vibration is stable. 

Otherwise, the vibration is unstable. Especially, if 

they stay on the criterion curve, the amplitude of 

vibration is neither increasing nor decreasing and the 

system would keep vibration continuously. Typical 

trajectories of rolls and vibration waveforms in 

different conditions are shown in Fig.12-17. 

Table 1  Fitting parameters in elements of damping matrix 

Item C11 C21 C21 C22 C31 C32 C41 C42 

1s (×10
6） -20.6 -3.14 -11.6 -44.6 3.33 -3.35 0.032 -1.92 

1
n  -0.40 -1.17 -0.91 -0.47 -0.78 -1.55 -4.2 1.25 

2
n  -1.04 -0.85 -1.29 -1.02 -1.11 -1.96 -1.5 -0.16 

correlation 

coefficient 
0.98 0.91 0.96 0.97 0.91 0.96 0.96 0.91 

Table 2  Fitting parameters in elements of stiffness matrix 

Item K11 K12 K21 K22 K31 K32 K41 K42 

2s (×10
7） 7.8 2.25 2.8 -237 -10.8 -104 8.8 156 

3
n  -0.33 -1.7 -1.25 -0.42 0.46 2.87 1.24 0.56 

4
n  -0.06 -0.083 -0.2 -0.01 0.06 0.14 0.29 0.05 

correlation 

coefficient 
0.93 0.84 0.93 0.97 0.94 0.98 0.84 0.97 

  

 

4.3 Prediction of vibration type  
If the rolling parameters or strip material need to 

change, using the developed method can give a 

prediction that whether the unstable self-excited 

vibration would occur in that condition and help 

people to determine appropriate rolling parameters.  

Take the above mentioned rolling mill for an 

example, when it was in the condition that the 

thickness of strip entrance was 15.67mm, rolling 

speed was 2280mm/s and press ratio was 0.542, 

obvious vibration was observed on the spot. This is 

consistent with the numerical results calculated by 

developed method. SS are 8 Characteristic roots of 

these differential equations, shown as follows. 

Fig.18-19 are trajectories of rolls and vibration 

waveforms in this condition. 

 

SS=16.7635191797153   1910.20470796588i 

-378.537148204286   1909.47447008261i 

-42.1418498537406   1355.90005903609i 

-615.884767679613   1837.49591197475i 
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Fig. 11. Criterion curve of vibration and measured data 

under a given rolling mill  
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Fig. 12. Waveform of divergent vibration in the direction of 

4 DOFs 
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Fig. 13. Upper and lower rolls’ trajectories of divergent 

vibration 
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Fig. 14. Waveform of criterion vibration in the direction of 

4 DOFs 
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Fig. 15. Upper and lower rolls’ trajectories of criterion 

vibration 
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Fig. 16. Waveform of convergent vibration in the direction 

of 4 DOFs 
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Fig. 17. Upper and lower rolls’ trajectories of convergent 

vibration 
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Fig.18. Waveform of vibration in the direction of 4 DOFs 
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Fig.19. Upper and lower rolls’ trajectories of vibration  

5 Conclusion 
To further understand the self-excited vibration of 

rolling mill, this research presents a model of the mill 

system for determining the self-excited vibration 

criterion. It should be noted that the strip rolling 

process is simulated by rigid plastic FEM. It can 

calculate the force change due to the perturbations 

reasonably. By fitting the parameters in the function 

of press ratio   and rolling speed v, the elements of 

stiffness matrix and dumping matrix are obtained. 

Then the criterion curve of self-excited vibration of 

the rolling mill is calculated using the search method 

of golden mean. According to the comparison of 

measured data and calculated results, following 

conclusions are made: 

1) The criterion curve obtained by the proposed 

method agrees quite well with measured data, 

even though this approach contains some 

hypotheses. It’s believed that this research 

will help to optimize the rolling operational 

parameters and avoid the occurrence of 

self-excited vibration. 

2) The rolls’ vibration trajectories are predicted. 

Especially when the self-excited vibration is 

critical, the trajectories of work rolls are 

ellipses, whose major axis and minor axis lie 

in a new coordinate system. The angle   

between the new coordinate system and the 

old one is dependent on the initial conditions. 

3) Also, the calculation shows that the damping 

factor is proportional to the inverse of the 

strip speed as 1/v. This result explains the 

shape of the criterion curve qualitatively. 

As a next step, the effect of friction should be 

investigated. It is important because of not only its 

value but also its relevance with the slipping velocity. 

Thus, carrying some experiments using a two-roll 

contact slipping system and considering the 

coefficient of friction as the function of slipping 

velocity are meaningful. Moreover, the strip motion 

between tandem mills should be simulated by treating 

the strip as plastic material instead of rigid-plastic 

material. This means that a more accurate FEM model 

is needed. In addition, influences of back-up rolls 

should be considered to investigate the mechanism of 

the vibration more clearly in the future. 
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